Ampyra Might Improve Walking Ability in Spinal Muscular Atrophy


A study by scientists from the Motor Neuron Center at Columbia University Medical Center (CUMC) identified the molecular pathway in spinal muscular atrophy (SMA) that leads to problems with motor function. Findings from the studies, conducted in fruit fly, zebrafish and mouse models of SMA, could lead to therapies for this debilitating and often fatal neuromuscular disease.

"Scientists call SMA a motor neuron disease, and there is post-mortem evidence that it does cause motor neurons to die," said Brian McCabe, PhD, assistant professor of pathology and cell biology and of neuroscience in the Motor Neuron Center, who led the first study. "However, it was not clear whether the death of motor neurons is a cause of the disease or an effect. Our findings in the fruit fly SMA model show that the disease originates in other motor circuit neurons, which then causes motor neurons to malfunction."

In motor circuits, which coordinate muscle movement, specialized sensory neurons called proprioceptive neurons pick up and relay information to the spinal cord and brain about the body's position in space. The central nervous system then processes and relays the signals, including via interneurons, to motor neurons, which in turn stimulate muscle movement.
"To our knowledge, this is the first clear demonstration in a model organism that defects in the function of a neuronal circuit are the cause of a neurological disease," added Dr. McCabe.
SMA is a hereditary neuromuscular disease characterized by muscle atrophy and weakness. The disease is caused by defects in a gene called SMN1 (survival motor neuron 1), which encodes the SMN protein.

To study the cause of SMA, the researchers worked with fruit flies that had been genetically altered so that every cell had a defective copy of the SMN1 gene. The flies' cells contained low levels of SMN protein, resulting in reduced muscle size and motor function, much as in humans with SMA. When fully functional copies of SMN1 were introduced into the flies' motor neurons or muscle cells, the cell types previously thought to be affected, the flies unexpectedly showed no improvement. Only when SMN1 was returned to other motor circuit neurons — in particular, proprioceptive neurons and interneurons — were muscle size and motor function restored.
In further experiments, the researchers demonstrated that in fruit flies with defective SMN1, proprioceptive neurons and interneurons do not produce enough neurotransmitters. When the flies' potassium channels were genetically blocked — thereby increasing neurotransmitter output — muscle size and motor function improved. The same effect was seen when the flies were given drugs that block potassium channels, suggesting that this class of drugs might help patients with SMA.

Supported by these findings, in July, the SMA Clinical Research Center at CUMC launched a clinical trial of a potassium channel blocker called dalfampridine (Ampyra) for the treatment of patients with SMA. The study will assess whether the drug improves walking ability and endurance in adults with SMA Type 3, compared with placebo. Claudia A. Chiriboga, MD, MPH, associate professor of Clinical Neurology at CUMC, is the lead clinical investigator. Ampyra was approved by the FDA for the treatment of patients with multiple sclerosis in 2010.
"This drug is unlikely to be a cure for SMA, but we hope it will benefit patient symptoms," said Dr. McCabe. "Other compounds at various stages of development hold promise to fix the underlying molecular problem."

Comments